منابع مشابه
Submodule of free Z-module1
In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this arti...
متن کاملTorsion Z-module and Torsion-free Z-module
In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lovász) base reduction algorithm [20], cryptographic...
متن کاملRank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module
In this article, we formalize some basic facts of Z-module. In the first section, we discuss the rank of submodule of Z-module and its properties. Especially, we formally prove that the rank of any Z-module is equal to or more than that of its submodules, and vice versa, there exists a submodule with any given rank that satisfies the above condition. In the next section, we mention basic facts ...
متن کاملTorsion Z-module and Torsion-free Z-module1
In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lovász) base reduction algorithm [20], cryptographic...
متن کاملOn the Square Submodule of a Mixed Module
The notion of the square submodule of a module M over an arbitrary commutative ring R, which is denoted by RM, was introduced by Aghdam and Najafizadeh in [3]. In fact, RM is the R−submodule of M generated by the images of all bilinear maps on M. Furthermore, given a submodule N of an R−module M, we say that M is nil modulo N if μ(M×M) ≤ N for all bilinear maps μ on M. The main question about t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2013
ISSN: 1898-9934,1426-2630
DOI: 10.2478/forma-2013-0029